A University of G‘\ S
AR BRISTOL

IE

Merchant Venturers School of Engineering

Outreach Programme

Micro:bit Space Invaders

Using the Block Editor

Created by

Ed Nutting

Organised by

Caroline.Higgins@bristol.ac.uk

Published on September 13, 2016

mailto:Caroline.Higgins@bristol.ac.uk

Notes to Teachers & Helpers

This workshop is intended to last 1 to 2 hours.
This workshop is intended for ages 8" (years 47).

The content is intended to be learnt through self-directed, individual work, using this worksheet
as a guide.

The learning platform is the BBC Micro:bit (and the online Block Editor - very similar to
Scratch).

Students can use their own Micro:bit or we can provide a Micro:bit for the session.

Students should be comfortable using the computer, including knowing how to click /drag blocks
in the editor to join them together.

This workshop teaches the following skills:

Items marked with an asterisk are directly relatable to the National Curriculum.

- Basic operations: Turning on/off LEDs, showing numbers

- Use of sensors/input: Buttons, Tilt-sensor

Conditional blocks (if/else-if /else)

Basic logic: AND, OR, Greater-than, Less-than, Equal-to

Basic mathematical programming: Addition, Subtraction, Division, Max/Min

* ¥ ¥ ¥

Basic game programming: Events, Control Logic

1 Introduction

Hi! In this short workshop we're going to try to introduce some of the concepts that
Computer Scientists use every day to design everything from your games on your mobile to
controllers for nuclear power plants.

Let's get started. Each section is made up of four parts:

Actions Stuff for you to do. They are highlighted in blue.

Notes Notes about important stuff you need to be aware of (and possibly remem-
ber!). They are highlighted in red.

Questions you should try to answer. Sometimes you'll need to write things
down; other times you'll need to build something in the game. They are
highlighted in yellow.

Ask a helper or the teacher to check your answers.

Goals Stuff you should have completed at the end of each section. They are
highlighted in green.

We'll also write some information between parts and include plenty of screenshots to help
you out.

Getting Started

Actions
1. Plug your Micro:bit into the computer using the USB cable
2. Look at the Micro:bit files in the file explorer

3. Open the "Microbit.htm" file (e.g. by double clicking) which should take
you to the Micro:bit website

4. Click the “Create Code” button
5. In the “Microsoft Block Editor” box, click the “New Project” link

6. At the top of the page, rename your project to “Space Invaders”

Micro:bit plugged into laptop using the supplied USB cable

- n MICROBIT (D)

File Home Share View ~ a
« v e ? ThisPC > MICROBIT (D3) v Q| | Search MICROBIT (D) y=l
= This PC ~ Name Date modified Type Size
m Desktop I AUTO_RST.CFG 27/05/2004 16:30 CFGFile 1KB
Documents DETAILS.TXT 27/05/2004 16:30 Text Document 1KB
Downloads @ MICROBIT.HTM 27/05/2006 16:30 Firefox HTML Doc... 1KB
D Music
= Pictures
E Videos

% Local Disk (C)
w MICROBIT (D3

= MICROBIT (D)

ﬂ' Network

v

Jitems 1item selected 512 bytes

Files on the Micro:bit - double click the .htm file to open the website

BEEE () micro:bit™ @ Signin = More

Watch Video

Discover Everything

https://www.microbit.co.uk/create-code

Create Code on Micro:bit website

4

D @ | https;//www.microbit.co.uk/app/#edit:809a66¢7-0834-4464-c8f8-27ab34f1dd46 e || Q search *Ea ¥ A O =

PEOOD @ mmmm e
my scripts compile convert help @

Basic
Input
Loops
Logic
Variables
Maths
LED
Music
Game
Images
Pins
Devices

Microsoft
51> Block Editor

Rename your new project to Space Invaders

Goals
Great! You should now have a new Block Editor project open and ready to start
creating your game.

3 Lighting the LEDs

We're going to start simple, by just getting an LED to display on the screen. Then we'll
see how we can make a pattern of LEDs blink.

First, we need a loop. A loop is a block of code which repeats. Some loops repeat forever,
others repeat for only a certain number of times. We want a “forever” loop.

Actions

1. Click the “Basic” tab on the left

2. Click and drag a “forever” block into the editing area

cJolexo

my scripts run compile convert
sh-:nwnuml:uer
I Input
I Loops show leds
I Logic
I Variables
} Maths
| e
I Music
I Game
I Images
| o
I Devices

clear screen

pause (ms)

Forever block in the Basic tab

Each time around the loop, we're going to clear the screen and then light up some LEDs
again. Later, we'll see how this allows us to move the defender and the space invaders
around the display.

Actions

3. Click and drag a “Clear screen” block from the “Basic” tab to the inside of
your “forever” block

4. Click and drag a “Plot x/y" block from the “LED” tab to just after the
“Clear screen” block

5. Add more “Plot x/y" blocks and change the x/y values to plot more pixels.
You can choose any number between 0 and 4 (including 4)!

6. Click “compile” at the top of the screen and download the file to your
Microbit.

OPOOD®

my scripts compile convert help

Basic
Input
Loops forever

Logic clear screen
Variables

plot x y
- o x ofgll v il
LED plot x ' & v B

Music ot x '@y '@
Game : :

Images
Pins
Devices

Plotting pixels

Goals
You should now see your pattern of LEDs on the display of your Micro:bit!

4 Defender Position

Now we know how to make the LEDs light up, we want to be able to use the bottom row
of LEDs to display the defender. The defender will be represented by a single LED in the
column the defender can shoot in.

We need to track the defender’s position - O for left-most column, 4 for right-most and
1,2,3 for the columns in between. To keep track of which column the defender is in, we
can use a ‘variable”.

Notes

A variable named thing which can be set to a whole number (0,1,2,3,......) or
a logic value (true/false). We can change the value of the variable at different
points in the code.

Actions

o n

1. Click and drag an “ltem” block from the “Variables” tab into the “x" value
of a “plot” block

2. Click the down arrow next to the word “item” in the block
3. Click “Rename variable...”

4. Rename the variable to “DefenderX” (without the quotes)
5. Set the “y" value of the “plot” block to 4

6. Remove any other “plot” blocks from your “forever” loop

10

& &)

my scripts run compile convert

Basic
Input
Loops forever

Logic ' clear screen
Variables

Maths
LED

Miicir

VS Defenderx + | A 4 |

Plotting the Defender

Goals
Click run to see a simulation of your program in the editor. You should see the
bottom-left LED light up.

11

5 Moving the defender

We now know how to use a variable to track the defender’s position and make the LED
light up. But the value of the variable is never changed - our defender always stays in the
bottom left!

We're going to use the tilt sensor to move our defender around. When the board is tilted
left, the defender will move towards the left hand side of the display. When the board is
tilted right, the defender will move towards the right hand side of the display.

Actions

1. Click and drag another “forever” block into the editing area (from the “Ba-
sic” tab)

2. Click and drag an “if" block from the “Logic” tab into the “forever” block

Notes

An “if" block is a decision block (often called a Conditional block). You test
something, and if that test passes, then the code inside the block executes. Oth-
erwise, the code inside the block doesn’t execute and the programs goes to the
block following the if block.

Notes

The “test” the if-block uses is called the “condition”. It is a logic equation. For
example, “is five greater than four” is a condition (to which the answer is always
“yes" - usually called “true”). If the condition is “true” the code inside the if block
executes, otherwise the condition is “false” so the code inside doesn't execute.

12

Condition: Whether to
run the code (true) or

<not (false)

£ Code to execute if
condition is true

An if-block: Condition determines if the code inside runs.

Actions

3. Click and drag a “less-than” block (“j" block) from the “Logic" tab to the
connector on the right of the word “if”

4. Click and drag a “rotation” block from the “Input” tab to the left-hand “0"
of the “less-than” block

5. Click the drop down and select “roll” instead of “pitch”

6. Set the “0" on the right-hand side to “-20"

13

OICIOXEOJO,

my scripts compile convert help

Basic
Input
Loops forever

Logic clear screen

Variables S Defenderx - IS4)
Maths ']

LED

Music
Game farever

Images L rotation (°) | |

Pins

Devices

First condition for rotation of the Micro:bit

Notes
This code continuously loops, checking to see if the tilt of the Micro:bit is 20
degrees or more to the left. If it is, it will execute the (empty) code inside the if
block.

Actions

7. Click and drag a “set item to" block from the “Variables” tab to inside the
“if" block

8. From the drop down, change “item” to “DefenderX”

9. Click and drag a “max” block from the “Maths” tab to the right-hand
connector of the “set” block

14

© L @

my scripts run compile convert help
I Basic
I Input
I Loops forever
| Logic clear screen

Variables . ' '
I +88 DefenderX - FAEE 4
§ Maths - :
| weo
I Music
I Game forever
| Images (& (" rotation (°) (KD CEB 1)
1 Pins T | -

CLINE-108 DefenderX » RO C=ED of n and n

I Devices L

First use of a max-block

Notes
“Max" is a clever maths operation which picks the larger of the two numbers it is
given.

Actions

10. Click and drag a “subtract” block (“-" block) from the Maths tab to inside
the left-hand value of the “max” block

11. Click and drag a “DefenderX” item block to inside the left value of the
“subtract” block

12. Set the right side of the “subtract” block to 1

15

forever

(o] i | rotation (*) @IED | CED &0

do tet DefenderX + Ri [max + [DefenderX - 'n n' " and n

Code for moving the defender left

Notes

The code inside the if block will now set the “DefenderX” variable to the maximum
of “DefenderX - 1" and “0". In other words, if the defender is in the left-most
column (column 0) it will stay there. If it is not in the left-most column, the
defender will move one column to the left. E.g. if it is in column 3, it will move
to column 2.

Actions

13. Copy and paste the “if’ block to after itself (use Ctrl+C to copy, Ctrl+V
to paste)

14. Set the condition to use “>" (greater-than) instead of "<" (less-than)
15. Set the right hand comparison value to “20" instead of “-20"

16. Set the maths operation to “min” instead of “max”

17. Change the “subtract” operation to “addition”

18. Set the right hand “and” value of the “min” block to “4”

16

forever

() 1" rotation (°) IS | XD €& |
do tﬂ DefenderX + () ‘max v | TR e - | and ﬂ
©) 11 rotation (°) (KD EXD €3 |

do tet' DefenderX -~ R -mm of

DefenderX « [+ * 101 1 10 ks

Code for moving the defender left and right

Notes
The tilt direction in the simulator in the editor is the opposite to the real Mi-
cro:bit.

Goals

Compile and save your code to your Micro:bit - you should now see the Defender
move left and right on the bottom of the display when you tilt the Micro:bit left
and right.

Notes
You may notice the defender moves very quickly - too quickly! We can fix that
by adding a delay to the loop.

Notes
A delay pauses the execution of the blocks for a length of time. The length of
time is in milliseconds. There are 1000 milliseconds to 1 second.

17

Actions

19. Click and drag a “pause” block from the “Basic” tab to the end of the
“forever” loop after your “if" blocks

20. Set the value to “100" (if it is not already 100)

forever
(@) [(" rotation (°) (EIED | CED &)
do tet DefenderX -+ [‘max * Jui DefenderX - M- - | n' " and ﬂ

() i rotation (°) (XIS EEB €O
do "tet'tu | CIED of

Improved code for moving the defender left and right

Goals

Compile and save your game to your Micro:bit. You should now be able to control
the defender position so that you can put it in a particular column by tilting left
and right.

18

6 Starting the game

At the moment, as soon as the Micro:bit switches on, the game will begin.
problem because you may want to wait until the player is ready. We can achieve this by
using another variable and waiting for the A and B buttons to be pressed before starting
the game.

When both the A and B buttons are pressed together, we will set a new variable called
to “true” to indicate the start of the game. When the player dies during a level,
it will reduce their number of lives by 1. When they have no lives left, we will set “Playing”

“Playing”

to false to signal the end of the game.

Let's start by doing the game start signal - buttons A and B being pressed together.

1.

Actions

Click and drag an “on button A pressed” block from the “Input” tab onto
the editing area

From the drop down, change “A" to “A+B"

Add a “set item to" block (from the “Variables” tab) into the “do” section
of the button press block

From the “item” drop down, select “New variable...”
Call the new variable “Playing” (without quotes)

From the “Logic” tab, click and drag a “true” block to the right hand
connector of the “set Playing to" block.

on button pressed

do Egi Playing = FGHE true

Code to detect user pressing buttons A and B to start the game.

19

This is a

We also only want to draw the player and invaders on the screen when the game is being
played. We can make sure they are only drawn when the game is being played by putting
an if-block around our draw code. The condition of the if block will be our variable -
“Playing” .

Actions
7. Click and drag an “if" block from the “Logic” tab into the editing area

8. Click and drag the “clear screen” block (which should drag the blocks after
it too) from the “forever” loop into the “if" block

9. Click and drag a “Playing” variable block from the “Variables” tab into the
right-hand connector of the “if" block condition

10. Click and drag the “if" block (and all its contents) back into the empty
“forever” loop

forever

‘@ | Playing -

do | clear screen

o4 DefenderX * [, -

Only draw the player / invaders when playing the game

Goals

Compile and save your game to your Micro:bit. When the Micro:bit powers on,
the screen should be blank. Press the A and B buttons together - you should now
see the defender at bottom of the display.

20

7 Invaders Positions

There will be six invaders, that will start at the top-left and work their way across as a
block from left to right. When they reach the right hand side, they will jump back to the
left again.

We will need to keep track of which invaders are alive and which are dead. We can do this
using six variables named “Invaderl”, “Invader2” and so on up to “Invader6”. If an invader
variable is “true”, it will mean the invader is alive. If it is “false”, the invader is dead.

We will also need to know where the invaders are. We will use two variables for this: one for
the X-location (column number) that the left-most invader is in, and one for the Y-location
(row number) that the top-most invader is in.

Actions

1. Add blocks to your game's code so that it matches the screenshot below.
You will need to add a new “forever” block.

21

forever

‘@ | Playing -

do | set- to
set to
set to
set to
set to
set to |
set to | (@
set to | @

Initialising variables for tracking the invaders

Now we need to plot the invaders - i.e. to display them on the LEDs. We can do this by
using the current location of the invaders and whether each invader is alive. If the invader
is alive, we turn on the relevant LED. Otherwise, we leave the LED off.

Actions

2. Add blocks to your game's code (extending the section we made earlier for
displaying the defender) so that it matches the screenshot below.

22

forever
B0 Playing +
do l cleér screen
88 Defenderx -+ |1
‘ @ Invader -

- _ _
PIot X @20 20l
L |

@ lnvader2 -

do | 1
plot x ‘InvadersY * J+ - 1" 0 |

-

B | [invades -

do |
plot x

—

ivadersy)+ = 10 0

() if Finvader4 -

do |
G S invadersx - J+ - [o BEASEE invacersy - [+ - J{ 1)
L -

@ . nvaders -

do | . .
L SN invadersX - I+~ JHC1 JRRASNE Invadersy - I+ - 1)
- _ _ _

© . invaders -

do 1] |
plot x o InvadersY + B+ + I 1 |

e

Code for displaying the invaders and the defender

Goals

Compile and save your game to your Micro:bit game to your Microbit. When the
device powers on, press the A and B buttons together. You should now see the
defender moving as before and the six invaders (staying still) in the top-left corner.
(We'll make them move in the next section!)

23

8 Controlling the game

Our game is almost complete - we just need to add the final two sections of code. The first
one is what we call the “Game Logic’. The second is the section to enable the defender
to shoot players.

The Game Logic is the main section of control code which determines how the game
proceeds (as opposed to how its drawn or how the player moves). Game Logic also includes
the number of lives a player has and what determines when a player dies.

Our game logic breaks down into two loops: An outer loop that allows the player to
keep playing while they have lives left. And an inner loop: Which progresses through
harder /faster levels until the player dies.

Actions

1. Add blocks to your game's code so that it matches the screenshot below.

24

forever

NE@ A Piaying -]
do [set (M=XD 0 | B
set (T to
e =T o |
do [set CITED to | (NS
08 LevelDelay + 5
t1 Invadert « §&
t1 Invader2 - 1%
t1 Invader3 « K&
-1 Invaderd « N0
1 Invaders « J
-1 Invaders « N
set MEEE © | 0
set MEEEDEA © | 0
while | CIETED
i pause (ms) | (ISTEREET
Q0 2]
do _Invadersxv to m = 1)

else if

[invagersy (= - B2 JMLEE o rvaders - Jor - I vaoers -

do | set CITED o (EEXD

else if

(invadersy + J(= - I3 JHLaad Prvaderz » Jor - W invaders -)

do | set CITES o | EEXD

siealf S [ret 2L nvader2 -~ J(or - |
| Invader3 + il or - “invaderd - |
Tesl] ©) @)

[invacersx - JENN0]
e invadersY - 0]
EERC | (T o0

-1 LevelDelay * | LevelDelay - JI - | LevelDelay = JIl + * | 7

sise (st (IXECEM 0 | O
set (IEEEED to

<=t X = 0

|,
“[f Playing ~ UM false - |
show number

Code for the game logic

1. Can you work out what is going on in this code?

2. Before you run the code, from your understanding of the code, do you think
the space invaders will move from left to right or from right to left?

3. Before you run the code, from your understanding of the code, how many
lives will the player get?

4. Before you run the code, from your understanding of the code, will the speed
of each level increase? If so, by how much each time?

25

Goals

Compile and save your game to your Micro:bit. Press the A and B buttons together
to start the game. You should see the invaders move around the display and the
defender move at the bottom of the display.

5. Now you've tried running the code, which direction do the space invaders
move?

6. How many lives did the player get?

The speed of the current level is reset when the player dies, so you won't have seen the
level-speed increase yet.

26

9 Shooting invaders

This is the last part to our code - shooting the invaders! We're going to program our game
so that, after the game has started, when button A is pressed, the bottom-most invader
that is in the same column as the defender will be shot.

Actions

1. Click and drag an “on button A pressed” block from the “Input” tab onto
the editing area.

2. See if you can work out what if-blocks and conditions you will need to add to
the “on button A pressed” block, to determine which invader the defender
is underneath (if any)

on button pressed

: || DefenderX - (= v | 1

See if you can work out the last section of code!

Notes
Hint: Think about the position of the defender (DefenderX) and the position of
the invaders (InvadersX). You will want to compare them somehow!

Notes
Hint: The bottom-most invader should be killed first. Once it is dead, the top
row invader can be shot.

Goals
Test your new code. Does it work? If not, keep trying - code, test, repeat - that's
how real computer scientists and software engineers work.

27

Actions

3. Try to get a working version of shooting the invaders. If you're having
problems, ask a workshop helper.

Goals
Congratulations! You've finished making the game!

7. Are there any improvements to the game you can think of7 Have a go at
programming them. Remember: code-test-repeat.

28

10 Wrap-up

We hope you enjoyed this workshop! There's another workshop called Microbit Python
Space Invaders that will teach you how to create a more advanced version of this game in

Python. Ask your teacher about it!

29

	Introduction
	Getting Started
	Lighting the LEDs
	Defender Position
	Moving the defender
	Starting the game
	Invaders Positions
	Controlling the game
	Shooting invaders
	Wrap-up

